Positive frequency at Gamma for cubic BaTiO3

Phonons, DFPT, electron-phonon, electric-field response, mechanical response…

Moderators: mverstra, joaocarloscabreu

Locked
gswylq
Posts: 7
Joined: Tue Jun 17, 2014 2:07 am

Positive frequency at Gamma for cubic BaTiO3

Post by gswylq » Tue Jun 17, 2014 2:36 am

I'm trying to compute the phonon frequencies at Gamma for materials such as cubic BaTiO3, which is reported in literature to have a negative frequency of about 200cm-1 at Gamma. However, the calculation results are different from that of the literature (Lattice dynamics of BaTiO3, PbTiO3 and PbZrO3: a comparative first-principles study). The obtained frequencies at Gamma is all positive. Please tell me how to manage this problem.
Here is a part of my input and output files:

Code: Select all

  ndtset  3

#Ground state calculation
  kptopt1   1             # Automatic generation of k points, taking
                          # into account the symmetry
  tolvrs1   1.0d-18       # SCF stopping criterion
    iscf1   5             # Self-consistent calculation, using algorithm 5

#Response Function calculation : d/dk
  rfelfd2   2             # Activate the calculation of the d/dk perturbation
   rfdir2   1 1 1         # Need to consider the perturbation in the x-direction only
                          # This is rather specific, due to the high symmetry of the AlAs crystal
                          # In general, just use rfdir 1 1 1
                          # In the present version of ABINIT (v4.6), symmetry cannot be used
                          # to reduce the number of ddk perturbations
npfft 1
    nqpt2   1
     qpt2   0.0 0.0 0.0   # This is a calculation at the Gamma point

  getwfk2   1           # Uses as input the output wf of the previous dataset

  kptopt2   2             # Automatic generation of k points,
                          # using only the time-reversal symmetry to decrease
                          # the size of the k point set.

    iscf2  -3             # The d/dk perturbation must be treated
                          # in a non-self-consistent way
  tolwfr2   1.0d-18       # Must use tolwfr for non-self-consistent calculations
                          # Here, the value of tolwfr is very low.

#Response Function calculation : electric field perturbation and phonons
  rfphon3   1             # Activate the calculation of the atomic dispacement perturbations
 rfatpol3   1 5           # All the atoms will be displaced
  rfelfd3   3             # Activate the calculation of the electric field perturbation
   rfdir3   1 1 1         # All directions are selected. However, symmetries will be used to decrease
                          # the number of perturbations, so only the x electric field is needed
                          # (and this explains why in the second dataset, rfdir was set to 1 0 0).

    nqpt3   1
     qpt3   0.0 0.0 0.0   # This is a calculation at the Gamma point

  getwfk3   1            # Uses as input wfs the output wfs of the dataset 1
  getddk3   2          # Uses as input ddk wfs the output of the dataset 2

  kptopt3   2             # Automatic generation of k points,
                          # using only the time-reversal symmetry to decrease
                          # the size of the k point set.
  tolvrs3   1.0d-18
    iscf3   5             # Self-consistent calculation, using algorithm 5


#######################################################################
   acell 3*1.0
 rprim
       7.90086702951612E+00       0.000000000000000       0.000000000000000
       0.000000000000000      7.90086702951612E+00      0.000000000000000
       0.000000000000000       0.000000000000000       7.90086702951612E+00
 ntypat   3
  znucl   8  56 22
  natom   5
  typat   3*1 2 3
   xred   
     0.500000000000000   0.500000000000000   0
     0.500000000000000   0.0000000000000000  0.5
     0.0000000000000000   0.500000000000000   0.5
     0.0000000000000000   0.0000000000000000   0
     0.500000000000000   0.500000000000000   0.5000000000000000

#Gives the number of band, explicitely (do not take the default)
nband  18               # For an insulator (if described correctly as an insulator
                       # by DFT), there is no need to include conduction bands
                       # in response-function calculations

#Exchange-correlation functional
ixc 1             # LDA Teter Pade parametrization

#Definition of the planewave basis set
ecut    40.0           # Maximal kinetic energy cut-off, in Hartree
nshiftk 1
shiftk 0.0 0.0 0.0
ngfft 48 48 48

    ngkpt   4 4 4

occopt 7 # Fermi-Dirac
tsmear 0.02 # ~0.2 eV, Default 0.04Ha
#Definition of the SCF procedure
nstep 100              # Maximal number of SCF cycles
diemac 9.0             # Although this is not mandatory, it is worth to
                       # precondition the SCF cycle. The model dielectric
                       # function used as the standard preconditioner
                       # is described in the "dielng" input variable section.
                       # The dielectric constant of AlAs is smaller that the one of Si (=12).
# add to conserve old < 6.7.2 behavior for calculating forces at each SCF step
 optforces 1


Code: Select all

trf1_1.in
trf1_1.out
trf1_1i
trf1_1o
trf1_1
8o.pspnc
56ba.pspnc
22ti.pspnc


Code: Select all

trf1_1.out

  Phonon wavevector (reduced coordinates) :  0.00000  0.00000  0.00000
 Phonon energies in Hartree :
   2.995340E-04  2.995340E-04  2.996006E-04  9.021911E-04  9.021911E-04
   9.022290E-04  1.232878E-03  1.232878E-03  1.232878E-03  1.272832E-03
   1.272834E-03  1.272834E-03  2.249139E-03  2.249162E-03  2.249162E-03
 Phonon frequencies in cm-1    :
-  6.574012E+01  6.574012E+01  6.575473E+01  1.980080E+02  1.980080E+02
-  1.980164E+02  2.705854E+02  2.705854E+02  2.705854E+02  2.793543E+02
-  2.793548E+02  2.793548E+02  4.936290E+02  4.936340E+02  4.936340E+02
 
  Phonon at Gamma, with non-analyticity in the
  direction (cartesian coordinates)  1.00000  0.00000  0.00000
 Phonon energies in Hartree :
   2.995340E-04  2.996006E-04  3.329321E-04  9.021911E-04  9.022290E-04
   1.096572E-03  1.232878E-03  1.232878E-03  1.232878E-03  1.272832E-03
   1.272834E-03  1.939203E-03  2.249139E-03  2.249162E-03  3.124761E-03
 Phonon frequencies in cm-1    :
-  6.574012E+01  6.575473E+01  7.307015E+01  1.980080E+02  1.980164E+02
-  2.406698E+02  2.705854E+02  2.705854E+02  2.705854E+02  2.793543E+02
-  2.793548E+02  4.256059E+02  4.936290E+02  4.936340E+02  6.858057E+02
 
  Phonon at Gamma, with non-analyticity in the
  direction (cartesian coordinates)  0.00000  1.00000  0.00000
 Phonon energies in Hartree :
   2.995340E-04  2.996006E-04  3.329321E-04  9.021911E-04  9.022290E-04
   1.096572E-03  1.232878E-03  1.232878E-03  1.232878E-03  1.272832E-03
   1.272834E-03  1.939203E-03  2.249139E-03  2.249162E-03  3.124761E-03
 Phonon frequencies in cm-1    :
-  6.574012E+01  6.575473E+01  7.307015E+01  1.980080E+02  1.980164E+02
-  2.406698E+02  2.705854E+02  2.705854E+02  2.705854E+02  2.793543E+02
-  2.793548E+02  4.256059E+02  4.936290E+02  4.936340E+02  6.858057E+02
 
  Phonon at Gamma, with non-analyticity in the
  direction (cartesian coordinates)  0.00000  0.00000  1.00000
 Phonon energies in Hartree :
   2.995340E-04  2.995340E-04  3.329789E-04  9.021911E-04  9.021911E-04
   1.096644E-03  1.232878E-03  1.232878E-03  1.232878E-03  1.272834E-03
   1.272834E-03  1.939211E-03  2.249162E-03  2.249162E-03  3.124751E-03
 Phonon frequencies in cm-1    :
-  6.574012E+01  6.574012E+01  7.308042E+01  1.980080E+02  1.980080E+02
-  2.406854E+02  2.705854E+02  2.705854E+02  2.705854E+02  2.793548E+02
-  2.793548E+02  4.256077E+02  4.936340E+02  4.936340E+02  6.858035E+02

== END DATASET(S) ==============================================================
================================================================================

Locked